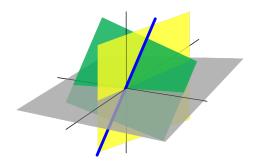
Algèbre Linéaire

Cours du 26 novembre

Jérôme Scherer



A.7 Arithmétique modulaire

Comme pour $\mathbb{F}_2 = \{0,1\}$ on peut considérer l'ensemble des nombres entiers $\{0, 1, 2, ..., n - 1\}$.

On regarde ces nombres comme tous les restes possibles de la division par n, ce qui nous permet de définir une somme et un produit en calculant dans \mathbb{Z} , mais en ne gardant que le reste de la division. Ainsi

ivision. Ainsi

Dans
$$\{0,1,2\}$$
 on calcule $2+2=1$ or $4=1\cdot 3+1$

Dans $\{0,1,2\}$ on calcule $2^3=8$

② Dans
$$\{0,1,2\}$$
 on calcule $2^3 = 8 = 2$ $\iff 8 = 2.3 + 2$

- **3** Dans $\{0, 1, 2, 3, 4\}$ on calcule $3 \cdot 4 = 2$
- **1** Dans $\{0, 1, 2, 3, 4\}$ on calcule 1 4 = 2
- **3** Dans $\{0, 1, 2, 3, ..., 10, 11\}$ on calcule $10 \cdot 6 = 60 = 5 \cdot 12 = 0$

A.8 LE CORPS \mathbb{F}_p

Proposition

Lorsque n n'est pas un nombre premier les opérations définies ci-dessus ne forment pas un corps.

Preuve. Comme n n'est pas premier, $n=a\cdot b$ pour 1< a,b< n. Ainsi le nouveau produit $a\cdot b$ est nul. Alors a ne peut pas avoir d'inverse car sinon $b=1\cdot b=a^{-1}\cdot a\cdot b=a^{-1}\cdot 0=0$.

THÉORÈME

Lorsque p est un nombre premier les opérations définies ci-dessus forment un corps \mathbb{F}_p .

Les seules propriétés qui ne découlent pas de celles de la somme et du produit dans $\mathbb Z$ sont l'existence d'opposé et d'inverse.

oppose: 2 also 200 cor est 0. son oppose 2 0 < doit · inverse 0<ac R \propto \propto est miechne Dest montre ce qui montroa que existe 042/4 Q(x , supposur x. R doil Drowes ave S an est dinie x-4 de den leur to ut 047/74 ā X emme

A.8 EXEMPLES m 2.3 = ans dar Dam Dans 64 espares rectivels Remarque: va des \$45 commo dan Ho 12x3

5.3.5 Critère de diagonalisation

En général, pour diagonaliser une matrice sur \mathbb{R} , il faut qu'il y ait assez de valeurs propres réelles et assez de vecteurs propres.

THÉORÈME

Une matrice A est diagonalisable sur $\mathbb R$ si et seulement si

- Le polynôme caractéristique est scindé sur \mathbb{R} : il se décompose en produit de facteurs (λt) avec $\lambda \in \mathbb{R}$.
- **2** Pour tout λ , on a $\dim E_{\lambda} = \operatorname{mult}(\lambda)$.

Si A est diagonalisable on forme une base de vecteurs propres en réunissant les vecteurs de base de chaque espace propre.

5.3.5 Exemple

Soit
$$A = \begin{pmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{pmatrix}$$
. On constate sans faire de calculs :

5.3.5 EXEMPLE, SUITE

5.3.6 Diagonalisabilité: Méthode

Soit $T: V \rightarrow V$ une application linéaire.

- Choisir une base \mathcal{C} de V (la base canonique si elle existe).
- ② Ecrire la matrice $A = (T)_{\mathcal{C}}^{\mathcal{C}}$ de T dans cette base.
- **3** Calculer le polynôme caractéristique $c_A(t)$.
- Si $c_A(t)$ n'est pas scindé, A n'est pas diagonalisable.
- Si $c_A(t)$ est scindé, extraire les racines λ de $c_A(t)$ et calculer les multiplicités algébriques.
- Calculer les espaces propres E_{λ} et les multiplicités géométriques.
- Si $\dim E_{\lambda} \neq \operatorname{mult}(\lambda)$ pour une valeur propre λ , alors A n'est pas diagonalisable.
- § Si $\dim E_{\lambda} = \operatorname{mult}(\lambda)$ pour tout λ , alors A est diagonalisable.

5.3.7 DIAGONALISATION: MÉTHODE

Soit $T: V \to V$ une application linéaire diagonalisable.

- **①** Choisir une base \mathcal{B}_{λ} de E_{λ} pour toute valeur propre λ .
- **2** Réunir les \mathcal{B}_{λ} pour former une base \mathcal{B} de V.
- **3** $D = (T)^{\mathfrak{B}}_{\mathfrak{B}}$ est diagonale. Les valeurs propres apparaissent dans la diagonale dans l'ordre choisi pour construire la base \mathfrak{B} .
- **1** Les colonnes de la matrice de changement de base $P = (\mathrm{Id})^{\mathfrak{C}}_{\mathfrak{B}}$ sont les vecteurs de \mathfrak{B} exprimés en coordonnées dans \mathfrak{C} .
- **1** $D = P^{-1}AP$ et $A = PDP^{-1}$.

5.3.7 Exemple : Choix d'une base pour T

Soit W le plan de \mathbb{R}^3 donné par l'équation x+y+z=0. On considère l'application linéaire $T:W\to W$ donnée par la formule

$$T\begin{pmatrix} -y-z \\ y \\ z \end{pmatrix} = \frac{1}{5}\begin{pmatrix} 9y+z \\ 3y-8z \\ -12y+7z \end{pmatrix}$$
 der well. = 0.

- **1** On vérifie d'abord que $T\overrightarrow{w} \in W$ pour tout $\overrightarrow{w} \in W$.

$$\left(\begin{pmatrix} -1\\1\\0\end{pmatrix},\begin{pmatrix} -1\\0\\1\end{pmatrix}\right)$$

5.3.7 Exemple : Diagonalisation de T

On peut maintenant calculer la matrice A de T, par rapport à la base \mathcal{C} . Il faut toutefois calculer les images des vecteurs de base :

$$T(c_1) = \frac{1}{5} \begin{pmatrix} 9 \\ 3 \\ -12 \end{pmatrix} = \frac{3}{5} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} - \frac{12}{5} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \frac{3}{5}c_1 - \frac{12}{5}c_2$$

$$T(c_2) = rac{1}{5} egin{pmatrix} 1 \ -8 \ 7 \end{pmatrix} = -rac{8}{5}c_1 + rac{7}{5}c_2$$

Par conséquent
$$A = \frac{1}{5} \begin{pmatrix} 3 & -8 \\ -12 & 7 \end{pmatrix}$$

5.3.7 Exemple: une nouvelle base

La base de vecteurs propres choisie pour diagonaliser A est par exemple formée de $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $\begin{pmatrix} -2 \\ 3 \end{pmatrix}$. A quelle base de W ces vecteurs correspondent-ils? Ces vecteurs sont donnés en coordonnées dans la base \mathcal{C} puisque A est la matrice de T par rapport à C: $\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} b_1 \end{pmatrix}_{\mathcal{O}}$ $(T)^{\mathcal{C}}_{\mathcal{C}}(x)_{\mathcal{C}} = (T(x))_{\mathcal{C}}$

Par exemple $b_1 = c_1 + c_2$. Ainsi

$$+ c_2. \text{ Ainsi} \qquad c_{\mathcal{A}} + c_2 = \begin{pmatrix} -\lambda \\ \lambda \\ 0 \end{pmatrix} + \begin{pmatrix} -\lambda \\ 0 \\ \lambda \end{pmatrix}$$

$$\mathcal{B} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ 2 \end{pmatrix}$$

La signification géométrique de T est maintenant transparente!

5.3.7 EXEMPLE, ILLUSTRATION (ARTISTIQUE) 6, transformation line aire 9 m renverse et weste

5.4.1 LA TRACE

DÉFINITION

Soit A une matrice $n \times n$. La trace $TrA = a_{11} + a_{22} + \cdots + a_{nn}$.

Exemple 1. Soit
$$A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
. Alors $\text{Tr} A = a + d$. Or

$$c_A(t) = (a-t)(d-t)-bc = t^2-(a+d)t+(ad-bc) = t^2-\text{Tr}A\cdot t+\det A$$

Exemple 2. Soit
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 et $\operatorname{Tr} A = a_{11} + a_{22} + a_{33}$.

$$c_A(t) = (a_{11} - t)(a_{22} - t)(a_{33} - t) + \text{polynôme de degré 1}$$

= $-t^3 + (a_{11} + a_{22} + a_{33})t^2 + \dots$

5.4.2 LA TRACE ET LE POLYNÔME CARACTÉRISTIQUE

PROPOSITION

Soit A une matrice de taille $n \times n$. Alors $(-1)^{n-1} \text{Tr} A$ est le coefficient de t^{n-1} de $c_A(t)$ et det A est le coefficient constant.

Preuve. On a
$$c_A(0) = \det(A - 0 \cdot I_n) = \det A$$
.

LEMME

Soient $A, B \in M_{n \times n}(\mathbb{R})$. Alors Tr(AB) = Tr(BA).

THÉORÈME

Si A est diagonalisable, alors la trace de A est égale à la somme des valeurs propres.

5.4.3 Deux compléments

THÉORÈME

Soit A une matrice carrée telle que $c_A(t)$ est scindé. Alors A est triangularisable (A est semblable à une matrice triangulaire).

Le théorème suivant affirme que le polynôme caractéristique "annule" la matrice A.

THÉORÈME DE CAYLEY-HAMILTON

Soit $c_A(t) = t^n + a_{n-1}t^{n-1} + \dots a_1t + a_0$ le polynôme caractéristique de A. Alors

$$A^{n} + a_{n-1}A^{n-1} + \dots + a_{1}A + a_{0}I_{n} = 0$$
 makive

5.4.3 EXEMPLE O Cale

Collection
$$B^2 - SB + 2I_2 = 0$$

Alon $B^2 - SB + 2I_2 = 0$

B. $(-1)(B - SI_2) = I_2$

B. $(-1)(B - SI_2) = I_2$

Contact passings be $(=)$ Nes $A \neq ds$?

 $(=)$ O got values paper be A
 $(=)$ Ca(a) = a

Ca(a) = a
 $(=)$ Ca(a) = a

5.5.1 Valeurs propres complexes

Soit A une matrice carrée de taille 2×2 à coefficients réels.

PROPOSITION

Soit $\lambda = a + bi$ une valeur propre complexe de A. Alors $\overline{\lambda} = a - bi$ est aussi valeur propre de A.

Preuve. $c_A(t) = (t - \lambda)(t - \mu) = t^2 - (\lambda + \mu)t + \lambda\mu$. Nous voulons montrer que μ est le conjugué complexe de $\lambda = a + bi$.

- **1** $\lambda + \mu$ est un nombre réel $\Rightarrow \text{Im}\mu = -b$ et $\mu = c bi$
- ② $\lambda \mu = (a+bi)(c-bi)$ est un nombre réel $\Rightarrow bc-ab=0$. Donc c=a et $\mu=a-bi$.

5.5.2 Usage des nombres complexes

Soit A une matrice carrée de taille 2×2 à coefficients réels.

THÉORÈME

Si
$$\lambda = a + bi$$
 est valeur propre de A , alors $A \approx \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$.

Observation. Soit \overrightarrow{V} un vecteur propre pour la valeur propre complexe λ . Alors les parties réelles et imaginaires $(\operatorname{Re} \overrightarrow{V}, \operatorname{Im} \overrightarrow{V})$ forment une base de \mathbb{R}^2 . Si elles étaient proportionnelles, toutes deux appartiendraient à E_{λ} , mais l'image d'un vecteur à coefficients réels est un vecteur à coefficients réels puisque A est à coefficients réels.

5.6.1 Application : calcul de puissances

Soit A une matrice diagonalisable. Il existe une matrice inversible P et une matrice diagonale D telles que

$$A = PDP^{-1}$$

Mais alors on a aussi

$$A^{2} = PDP^{-1}PDP^{-1} = PD^{2}P^{-1} \text{ et } A^{k} = PD^{k}P^{-1}$$

$$D = \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \dots & 0 & \lambda_{n} \end{pmatrix} \Rightarrow D^{k} = \begin{pmatrix} \lambda_{1}^{k} & 0 & \dots & 0 \\ 0 & \lambda_{2}^{k} & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \dots & 0 & \lambda_{n}^{k} \end{pmatrix}$$